Continuous Time Markov Chain Models for Chemical Reaction Networks

نویسندگان

  • David F. Anderson
  • Thomas G. Kurtz
چکیده

A reaction network is a chemical system involving multiple reactions and chemical species. The simplest stochastic models of such networks treat the system as a continuous time Markov chain with the state being the number of molecules of each species and with reactions modeled as possible transitions of the chain. This chapter is devoted to the mathematical study of such stochastic models. We begin by developing much of the mathematical machinery we need to describe the stochastic models we are most interested in. We show how one can represent counting processes of the type we need in terms of Poisson processes. This random time-change representation gives a stochastic equation for continuoustime Markov chain models. We include a discussion on the relationship between this stochastic equation and the corresponding martingale problem and Kolmogorov forward (master) equation. Next, we exploit ∗Research supported in part by NSF grant DMS 05-53687 †Research supported in part by NSF grants DMS 05-53687 and DMS 08-05793

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Multi Objective Fibonacci Search Based Algorithm for Resource Allocation in PERT Networks

The problem we investigate deals with the optimal assignment of resources to the activities of a stochastic project network. We seek to minimize the expected cost of the project include sum of resource utilization costs and lateness costs. We assume that the work content required by the activities follows an exponential distribution. The decision variables of the model are the allocated resourc...

متن کامل

Ju l 2 00 5 Asymptotic analysis of multiscale approximations to reaction networks ∗

A reaction network is a chemical system involving multiple reactions and chemical species. Stochastic models of such networks treat the system as a continuous time Markov chain on the number of molecules of each species with reactions as possible transitions of the chain. In many cases of biological interest some of the chemical species in the network are present in much greater abundance than ...

متن کامل

Organisation-Oriented Coarse Graining and Refinement of Stochastic Reaction Networks

Chemical organisation theory is a framework developed to simplify the analysis of long-term behaviour of chemical systems. In this work, we build on these ideas to develop novel techniques for formal quantitative analysis of chemical reaction networks, using discrete stochastic models represented as continuous-time Markov chains. We propose methods to identify organisations, and to study quanti...

متن کامل

Formal Quantitative Analysis of Reaction Networks Using Chemical Organisation Theory

Abstract. Chemical organisation theory is a framework developed to simplify the analysis of long-term behaviour of chemical systems. An organisation is a set of objects which are closed and self-maintaining. In this paper, we build on these ideas to develop novel techniques for formal quantitative analysis of chemical reaction networks, using discrete stochastic models represented as continuous...

متن کامل

Asymptotic analysis of multiscale approximations to reaction networks

A reaction network is a chemical system involving multiple reactions and chemical species. Stochastic models of such networks treat the system as a continuous time Markov chain on the number of molecules of each species with reactions as possible transitions of the chain. In many cases of biological interest some of the chemical species in the network are present in much greater abundance than ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010